A New Combination of CFTR Modulators Corrects Processing and Reduces Chronic Inhibition of F508del-CFTR

Flatley Discovery Lab is a not-for-profit drug discovery company focused exclusively on cystic fibrosis.

Flatley Discovery Lab, Charlestown, Massachusetts United States
FDL169 is a Corrector with In-Vitro Efficacy and Potency Equivalent to Lumacaftor

Top = 1.02 +/- 0.02
EC$_{50}$ = 97 +/- 10 nM

Acute Forskolin (10 μM) + Ivacaftor (1 μM)
Maturation of F508del-CFTR is Similarly Enhanced by FDL169 and Lumacaftor

Lumacaftor

FDL169

<table>
<thead>
<tr>
<th>DMSO</th>
<th>0.625</th>
<th>1.25</th>
<th>2.5</th>
<th>5</th>
<th>10</th>
<th>0.625</th>
<th>1.25</th>
<th>2.5</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Na/K ATPase

Ratio of F508del CFTR band B and C to Na/K ATPase

<table>
<thead>
<tr>
<th></th>
<th>0.10</th>
<th>0.93</th>
<th>0.91</th>
<th>0.97</th>
<th>1.04</th>
<th>0.97</th>
<th>0.86</th>
<th>0.68</th>
<th>0.80</th>
<th>1.02</th>
<th>1.09</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.40</td>
<td>0.80</td>
<td>0.82</td>
<td>0.81</td>
<td>0.80</td>
<td>0.80</td>
<td>0.90</td>
<td>0.76</td>
<td>0.87</td>
<td>0.98</td>
<td>1.11</td>
</tr>
<tr>
<td>B</td>
<td>0.25</td>
<td>1.16</td>
<td>1.10</td>
<td>1.19</td>
<td>1.29</td>
<td>1.22</td>
<td>0.95</td>
<td>0.91</td>
<td>0.91</td>
<td>1.03</td>
<td>0.98</td>
</tr>
<tr>
<td>C/B</td>
<td></td>
</tr>
</tbody>
</table>

Band B and Band C are increased by lumacaftor and FDL169.
Where do correctors work?

- Band B
- Folding
- Translation
- Band C
- Trafficking
- Processing
- Transcription

Borrowed from Martina Gentzsch
FDL169 Protects F508del CFTR from Inhibition by Prolonged Exposure to Ivacaftor in CFhBE Cells

<table>
<thead>
<tr>
<th>Condition</th>
<th>NAUC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VX809</td>
<td>1.0</td>
</tr>
<tr>
<td>VX809 + cVX770 (0.2 nM)</td>
<td>-56%</td>
</tr>
<tr>
<td>VX809 + cVX770 (2.0 nM)</td>
<td>-56%</td>
</tr>
<tr>
<td>VX809 + cVX770 (200 nM)</td>
<td>-56%</td>
</tr>
<tr>
<td>FDL169</td>
<td>-20%</td>
</tr>
<tr>
<td>FDL169 + cVX770 (0.2 nM)</td>
<td>-20%</td>
</tr>
<tr>
<td>FDL169 + cVX770 (2.0 nM)</td>
<td>-20%</td>
</tr>
<tr>
<td>FDL169 + cVX770 (200 nM)</td>
<td>-20%</td>
</tr>
</tbody>
</table>
Potentiator Effect of FDL176 on Chloride Current in F508del CFhBEs is Similar to Ivacaftor

EC₅₀ = 2 +/- 0.1 nM
EC₅₀ = 127 +/- 8 nM
Max = 1.01 +/- .01
EC₅₀ = 2 +/- 0.1 nM

Conc (µM) Fraction VX770 (1 uM)

0.0001 0.001 0.01 0.1 10 100
-0.25 0.25 0.50 0.75 1.00 1.25

FDL176
VX770

Max = 1.01 +/- .01
EC₅₀ = 127 +/- 8 nM
EC₅₀ = 2 +/- 0.1 nM
FDL176 induces less inhibition than Ivacaftor.

Concentration (μM)

<table>
<thead>
<tr>
<th>NAUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00001</td>
</tr>
<tr>
<td>0.25</td>
</tr>
</tbody>
</table>

VX770

FDL176

25% Reduction

65% Reduction
Maximum Chloride Current of FDL169 + FDL176 Combination

Peak Current

Peak

FDL169

FDL176

2-3
3-4
4-5
5-6
6-7
7-8
8-9
9-10
Co-treatment Under Chronic Conditions with FDL169 + FDL176 Yields Higher Chloride Current than Lumacaftor + Ivacaftor
Summary of this talk + poster #32

• FDL169 similar *in vitro* efficacy and potency to lumacaftor
• FDL169 protects F508del CFTR from inhibition by ivacaftor
• FDL169 less protein bound in human serum
• FDL169 distributes better to the rat lung
• FDL176 has *in vitro* efficacy similar to ivacaftor
• FDL176 has less chronic inhibition than ivacaftor
• FDL176 + FDL169 combine advantages of both drugs: further reducing chronic inhibition of F508del CFTR
• FDL169 in phase 1 clinical trial
• FDL176 in preclinical development
Special Thanks to:

HTS
Jinliang Sui
Abhijeet Kanawade
Eric Liu
Vy Mai

MedChem
Bridget Cole
Mike Zawistoski

Drug Development
John Ferkany
Andrew Kolodziej
Jianmin Mao

EPY
Mauri Krouse
Priyanka Bhatt
Violaine Bailey
Castera Bresilla
Justin Chin
Weiling An
Afia Dasgupta

MBO
Iris Kwok
Luis Miranda

Clinical Development
Claudia Ordonez
Jingwen Chai

DMR
Karen Handley

CEO
Richard Fitzpatrick
Figure 5: Cell surface expression of F508del CFTR at low (A) and high (B) potentiator concentrations. CFBE41o- cells were electroporated with the plasmid for HRP tagged F508del CFTR, and treated for 24 hours with either lumacaftor + ivacaftor or FDL169 + FDL176. In agreement with the electrophysiological studies, lumacaftor in combination with chronic ivacaftor treatment resulted in a lower CFTR protein at the plasma membrane than FDL169 in combination with chronic FDL176 treatment. Average 2 experiments Y axis: HRP cell surface activity, Relative Light Units